

školní rok: 2018/19

třída: 6.A

zkoušející: Daniela Čechová

Maturitní témata z fyziky ve francouzském jazyce – písemná zkouška

Thèmes de l'épreuve écrite de physique de la maturita bilingue franco-tchèque

1. Champs et interactions dans l'Univers

Interaction gravitationnelle; force d'interaction gravitationnelle, notion de champ gravitationnel; champ de pesanteur; poids; application: les lois de Kepler.

Interactions électriques; force électrique; notion de champ électrique; lignes de champ électrique; lignes équipotentielles; obtention et propriétés d'un champ électrique uniforme; applications.

Interactions magnétiques; forces de Lorentz; notion de champs magnétique créé par un aimant et par un courant; champ magnétique terrestre; spectre magnétique; obtention et propriétés d'un champ magnétique uniforme; applications.

2. La mécanique de Newton

Référentiel; vecteur vitesse et accélération en tant que dérivées; classification de mouvements; mouvement rectiligne uniforme; mouvement uniformément varié; mouvement circulaire uniforme; exemples de la vie courante

Notion de force, exemples de forces; lois de Newton: principe d'inertie, théorème du centre d'inertie, lois des actions réciproques: exemples de la vie courante.

3. L'énergie en mécanique et ses transformations

Travail d'une force; énergie cinétique; théorème de l'énergie cinétique; énergie potentielle de pesanteur et élastique; conservation de l'énergie mécanique; applications pratiques. Différentes formes d'énergie; exemples de transformation en mécanique, thermodynamique, électromagnétisme, physique nucléaire ...

4. Les applications de la dynamique

Chute verticale dans un fluide: Poussée d'Archimède; force de frottement; détermination de l'équation différentielle et de la vitesse limite.

Mouvement de chute libre avec ou sans vitesse initiale; détermination des équations horaires et de l'équation de la trajectoire.

Force d'interaction gravitationnelle; accélération d'un satellite ou d'une planète en mouvement circulaire uniforme; détermination de sa vitesse et de sa période; satellite géostationnaire; lois de Kepler.

Champ électrique; force électrique; canon à particules: calcul de la vitesse en sortie; déflexion d'un flux de particules: détermination des équations horaires et de l'équation de trajectoire; applications pratiques.

Champ magnétique; force de Lorentz; accélération de particules chargées dans un champ magnétique; détermination du rayon de la trajectoire.

5. Les oscillateurs

Les oscillateurs mécaniques: Période et mouvement d'un pendule simple et d'un pendule élastique; oscillations libres amorties et non amorties; oscillations forcées et résonance; étude énergétique; équation différentielle et équation horaire du mouvement d'un pendule élastique libre non amorti; applications pratiques.

Les oscillateurs électriques: Période et oscillations d'un circuit LC et RLC; étude énergétique; équation différentielle et équation horaire de la charge d'une armature d'un condensateur dans un circuit LC et RLC; oscillations forcées; courbe de résonance; impédance.

6. Les circuits électriques en régime continu

Courant électrique, tension électrique, loi d'Ohm pour différents composants, association de conducteurs ohmiques, loi des noeuds, loi des mailles, ampèremètre, voltmètre

7. Dipôle RC, induction et dipôles RL

Définition et caractéristiques d'un condensateur; charge et décharge d'un condensateur dans un conducteur ohmique; réponse d'un circuit RC à un échelon de tension; constante de temps d'un circuit RC; énergie emmagasinée dans un condensateur.

Induction électromagnétique, définition et caractéristiques d'une bobine; réponse d'un circuit RL à un échelon de tension; régime transitoire et régime permanent; constante de temps d'un circuit RL; énergie emmagasinée dans une bobine.

8. Physique nucléaire

Radioactivité: Constitution et représentation d'un noyau; radioactivité α , β^+ , β^- et γ ; loi de décroissance radioactive; activité; demi vie d'un nucléide.

Energie nucléaire: Relation d'équivalence masse énergie; défaut de masse et énergie de liaison; énergie de liaison par nucléon et stabilité d'un noyau: courbe d'Aston; transformations nucléaires provoquées: fusion et fission; bilan énergétique de ces réactions.

9. Les ondes et leurs propriétés

Les ondes mécaniques: Définition et propriétés; ondes mécaniques transversales et longitudinales; ondes mécaniques périodiques; périodicité spatiale et temporelle; le son et ses caractéristiques Caractère ondulatoire de la lumière: Justification du modèle ondulatoire; caractéristiques d'une onde lumineuse; dispersion; diffraction; interférences.

10. Optique géométrique. Exemples d'instruments d'optique

La propagation de la lumière: sources, classification des milieux, indice de réfraction, lois de Descartes sur la réflexion et la réfraction, dispersion, diffusion, applications

Lentilles convergentes et divergentes, instruments d'optique: définition et type de lentilles; caractéristiques d'une lentille: foyers, distance focale et vergence; construction et caractéristiques d'une image donnée par une lentille convergente et divergente; relation de conjugaison et grandissement; instruments d'optique simples: projecteur, microscope...

11. Caractère corpusculaire de la lumière, ouverture au monde quantique

Justification du modèle corpusculaire; caractéristiques du photon; effet photoélectrique; effet Compton; interprétation des spectres d'émission et d'absorption; modèle de l'atome d'hydrogène.